Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202311.1727.v3

ABSTRACT

The novel coronavirus disease (COVID-19) pandemic has resulted in over 720 million confirmed cases and 7 million deaths worldwide, with insufficient treatment options. Innumerable efforts are being made around the world for faster identification of therapeutic agents to treat the deadly disease. Postacute sequelae of SARS-CoV-2 infection or COVID-19 (PASC), also called Long COVID, is still being understood and lacks treatment options as well. A growing list of drugs are being suggested by various in silico, in vitro and ex vivo models, however currently only two treatment options are widely used: the RNA-dependent RNA polymerase (RdRp) inhibitor remdesivir, and the main protease inhibitor nirmatrelvir in combination with ritonavir. Computational drug development tools and in silicostudies involving molecular docking, molecular dynamics, entropy calculations and pharmacokinetics can be useful to identify new targets to treat COVID-19 and PASC, as shown in this work and our recent paper that identified alendronate as a promising candidate. We have now investigated all bisphosphonates which can bind competitively to nidovirus RdRp-associated nucleotidyl (NiRAN) transferase domain, and systematically down selected seven candidates (CHEMBL608526, CHEMBL196676, CHEMBL164344, CHEMBL4291724, CHEMBL4569308, CHEMBL387132, CHEMBL98211), two of whichclosely resemble the approved drugs minodronate and zoledronate. This work and our recent paper together provide an in silico mechanistic explanation for alendronate and zoledronate users having dramatically reduced odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations, and indicate that similar observational studies with minodronate could be valuable.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Disease
2.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0323.v1

ABSTRACT

Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to quickly get safe, effective, and affordable COVID-19 treatment is to repurpose drugs that are already approved for other diseases as adjuvants along with the ongoing vaccine regime. The process of developing an accurate and standardized drug repurposing dataset requires a considerable level of resources and expertise due to the commercial availability of an extensive array of drugs that could be potentially used to address the SARS-CoV-2 infection. To address this bottleneck, we created the CoviRx platform. CoviRx is a user-friendly interface that provides access to the data, which is manually curated for COVID-19 drug repurposing data. Through CoviRx, the data curated has been made open-source to help advance drug repurposing research. CoviRx also encourages users to submit their findings after thoroughly validating the data, followed by merging it by enforcing uniformity and integ-rity-preserving constraints. This article discusses the various features of CoviRx and its design principles. CoviRx has been designed so that its functionality is independent of the data it dis-plays. Thus, in the future, this platform can be extended to include any other disease X beyond COVID-19. CoviRx can be accessed at www.covirx.org.


Subject(s)
COVID-19
3.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0310.v1

ABSTRACT

SARS-CoV-2, is the cause of the COVID-19 pandemic which has claimed more than six million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA approved molecules with established safety profiles that have a plausible mechanism for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising repurposable drug candidates that are safe, efficacious, and cost-effective for the treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx, https://www.covirx.org/) that was also developed to enable scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.


Subject(s)
COVID-19
4.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0288.v1

ABSTRACT

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given the approximately 8,000 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially-available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies compared to in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus have virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL